Continuous Decision Variables with Multiple Continuous Parents
نویسنده
چکیده
This paper introduces an influence diagram (ID) model that permits continuous decision variables with multiple continuous parents. The marginalization operation for a continuous decision variable first develops a piecewise linear decision rule as a continuous function of the next continuous parent in the deletion sequence. Least squares regression is used to convert this rule to a piecewise linear function of all the decision variable’s continuous parents. This procedure is incorporated into an iterative solution algorithm that allows more refined decision rules to be constructed once the non-optimal regions of the state spaces of decision variables are identified. Additional examples serve to compare relative advantages of this technique to other ID models proposed in the literature.
منابع مشابه
FORCED WATER MAIN DESIGN MIXED ANT COLONY OPTIMIZATION
Most real world engineering design problems, such as cross-country water mains, include combinations of continuous, discrete, and binary value decision variables. Very often, the binary decision variables associate with the presence and/or absence of some nominated alternatives or project’s components. This study extends an existing continuous Ant Colony Optimization (ACO) algorithm to simultan...
متن کاملHybrid Bayesian Networks with Linear Deterministic Variables
When a hybrid Bayesian network has conditionally deterministic variables with continuous parents, the joint density function for the continuous variables does not exist. Conditional linear Gaussian distributions can handle such cases when the continuous variables have a multi-variate normal distribution and the discrete variables do not have continuous parents. In this paper, operations require...
متن کاملDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
متن کاملInference in Hybrid Bayesian Networks Using Mixtures of Gaussians
The main goal of this paper is to describe a method for exact inference in general hybrid Bayesian networks (BNs) (with a mixture of discrete and continuous chance variables). Our method consists of approximating general hybrid Bayesian networks by a mixture of Gaussians (MoG) BNs. There exists a fast algorithm by Lauritzen-Jensen (LJ) for making exact inferences in MoG Bayesian networks, and t...
متن کاملFast Gradient-Based Inference with Continuous Latent Variable Models in Auxiliary Form
We propose a technique for increasing the efficiency of gradient-based inference and learning in Bayesian networks with multiple layers of continuous latent variables. We show that, in many cases, it is possible to express such models in an auxiliary form, where continuous latent variables are conditionally deterministic given their parents and a set of independent auxiliary variables. Variable...
متن کامل